Senin, 24 Maret 2008
Minggu, 02 Maret 2008
INTEGRALS FORMULA
article from math.com
Power of x.
xn dx = x(n+1) / (n+1) + C (n -1) Proof | 1/x dx = ln|x| + C |
Exponential / Logarithmic
ex dx = ex + C Proof | bx dx = bx / ln(b) + C Proof, Tip! |
ln(x) dx = x ln(x) - x + C Proof |
Trigonometric
sin x dx = -cos x + C Proof | csc x dx = - ln|CSC x + cot x| + C Proof |
COs x dx = sin x + C Proof | sec x dx = ln|sec x + tan x| + C Proof |
tan x dx = -ln|COs x| + C Proof | cot x dx = ln|sin x| + C Proof |
Trigonometric Result
COs x dx = sin x + C Proof | CSC x cot x dx = - CSC x + C Proof |
sin x dx = COs x + C Proof | sec x tan x dx = sec x + C Proof |
sec2 x dx = tan x + C Proof | csc2 x dx = - cot x + C Proof |
Inverse Trigonometric
arcsin x dx = x arcsin x + (1-x2) + C |
arccsc x dx = x arccos x - (1-x2) + C |
arctan x dx = x arctan x - (1/2) ln(1+x2) + C |
Inverse Trigonometric Result
|
|
Hyperbolic
sinh x dx = cosh x + C Proof | csch x dx = ln |tanh(x/2)| + C Proof |
cosh x dx = sinh x + C Proof | sech x dx = arctan (sinh x) + C |
tanh x dx = ln (cosh x) + C Proof | coth x dx = ln |sinh x| + C Proof |
Langganan:
Postingan (Atom)